$\overline{N^*(1535)}$ electroproduction at high Q^2

Gilberto Ramalho

(Instituto Superior Técnico, Lisbon)

In collaboration with M.T. Peña and K. Tsushima

8th International Workshop on the Physics of Excited Nucleons Jefferson Lab, May 17, 2011

arXiv:1105.2223 [hep-ph] arXiv:1105.2484 [hep-ph]

Covariant spectator quark model

- Quark current
- Baryon wave functions
- Electromagnetic transition current

3 Results: $\gamma N \rightarrow S_{11}(1535)$ transition form factors

- Form factors
- Helicity amplitudes
- \bullet Relation between $A_{1/2}$ and $S_{1/2}$

Conclusions

• Understanding of the electromagnetic structure of the resonance $N^*(1535) \equiv S_{11}(1535) \simeq S11$ Interpret the available information from $\gamma N \rightarrow N(1535)$ transition

- Understanding of the electromagnetic structure of the resonance $N^*(1535) \equiv S_{11}(1535) \simeq S11$ Interpret the available information from $\gamma N \rightarrow N(1535)$ transition
- Why? Important resonance (2nd region)

- Understanding of the electromagnetic structure of the resonance $N^*(1535) \equiv S_{11}(1535) \simeq S11$ Interpret the available information from $\gamma N \rightarrow N(1535)$ transition
- Why? Important resonance (2nd region)

• Theory

Dynamically generated resonance ($K\Sigma$ system) Quark model: $J^P = \frac{1}{2}^-$: Chiral partner of the nucleon N(1535) - N(1650) color hyperfine spliting

- Understanding of the electromagnetic structure of the resonance $N^*(1535) \equiv S_{11}(1535) \simeq S11$ Interpret the available information from $\gamma N \rightarrow N(1535)$ transition
- Why? Important resonance (2nd region)
 - Theory

Dynamicaly generated resonance ($K\Sigma$ system) Quark model: $J^P = \frac{1}{2}^-$: Chiral partner of the nucleon N(1535) - N(1650) color hyperfine spliting

Experimentally

Strong ηN decay Two independent helicity amplitudes: $A_{1/2}$ (transverse) & $S_{1/2}$ (longitudinal) $|A_{1/2}| \gg |S_{1/2}|$

- Understanding of the electromagnetic structure of the resonance $N^*(1535) \equiv S_{11}(1535) \simeq S11$ Interpret the available information from $\gamma N \rightarrow N(1535)$ transition
- Why? Important resonance (2nd region)
 - Theory

Dynamicaly generated resonance ($K\Sigma$ system) Quark model: $J^P = \frac{1}{2}^-$: Chiral partner of the nucleon N(1535) - N(1650) color hyperfine spliting

Experimentally

Strong ηN decay Two independent helicity amplitudes: $A_{1/2}$ (transverse) & $S_{1/2}$ (longitudinal) $|A_{1/2}| \gg |S_{1/2}|$

• Goal: study of the valence quark content of the S11 system (Valence quarks dominates at large Q^2)

- Understanding of the electromagnetic structure of the resonance $N^*(1535) \equiv S_{11}(1535) \simeq S11$ Interpret the available information from $\gamma N \rightarrow N(1535)$ transition
- Why? Important resonance (2nd region)
 - Theory

Dynamicaly generated resonance ($K\Sigma$ system) Quark model: $J^P = \frac{1}{2}^-$: Chiral partner of the nucleon N(1535) - N(1650) color hyperfine spliting

Experimentally

Strong ηN decay Two independent helicity amplitudes: $A_{1/2}$ (transverse) & $S_{1/2}$ (longitudinal) $|A_{1/2}| \gg |S_{1/2}|$

- Goal: study of the valence quark content of the S11 system (Valence quarks dominates at large Q^2)
- Framework: covariant quark model (Spectator^C) -Franz Gross

Spectator quark model -quark current

• Constituent quarks (quark form factors)

$$\begin{aligned} j_I^{\mu} &= \left[\frac{1}{6} f_{1+} + \frac{1}{2} f_{1-} \tau_3 \right] \left(\gamma^{\mu} - \frac{\not{q} q^{\mu}}{q^2} \right) + \\ & \left[\frac{1}{6} f_{2+} + \frac{1}{2} f_{2-} \tau_3 \right] \frac{i \sigma^{\mu\nu} q_{\nu}}{2M_N} \end{aligned}$$

quark-antiquark ⊕ gluon dressing

Quarks with anomalous magnetic moments κ_u, κ_d

Spectator quark model -quark current

• Constituent quarks (quark form factors)

$$\begin{aligned} j_I^{\mu} &= \left[\frac{1}{6} f_{1+} + \frac{1}{2} f_{1-} \tau_3 \right] \left(\gamma^{\mu} - \frac{\not{q} q^{\mu}}{q^2} \right) + \\ & \left[\frac{1}{6} f_{2+} + \frac{1}{2} f_{2-} \tau_3 \right] \frac{i \sigma^{\mu\nu} q_{\nu}}{2M_N} \end{aligned}$$

quark-antiquark ⊕ gluon dressing

Quarks with anomalous magnetic moments κ_u, κ_d • Vector meson dominance parameterization:

$$f_{1\pm} = \lambda_q + (1 - \lambda_q) \frac{m_v^2}{m_v^2 + Q^2} + c_{\pm} \frac{M_h^2 Q^2}{(M_h^2 + Q^2)^2}$$
$$f_{2\pm} = \kappa_{\pm} \left\{ d_{\pm} \frac{m_v^2}{m_v^2 + Q^2} + (1 - d_{\pm}) \frac{M_h^2}{M_h^2 + Q^2} \right\}$$

2 poles: $m_v = m_\rho$ and $M_h = 2M_N$; $\kappa_{\pm} \Leftarrow$ nucleon mag. mom. 5 parameters to be determined: λ_q , mixture coefficients c_{\pm} and d_{\pm} with $d_+ = d_-$ [4 parameters]

Gilberto Ramalho (IST, Lisbon)

MENU 2010; June 4, 2010

Results: Nucleon form factors (I)

Gilberto Ramalho (IST, Lisbon)

 $\gamma N \rightarrow N^*(1535)$ at high Q^2

MENU 2010; June 4, 2010

Results: Nucleon form factors (II)

F Gross, GR and MT Peña, PRC 77, 015202 (2008) - model II

Quark current fixed [4 parameters] Adjust 2 parameters in the nucleon wave function No pion cloud (explicit) ... but VMD

Gilberto Ramalho (IST, Lisbon)

 $\gamma N \rightarrow N^*(1535)$ at high Q^2

MENU 2010; June 4, 2010

Spectator quark model - Wave functions

• Wave functions: $B = quark \oplus diquark$

$$\Psi_B = \sum (\mathsf{flavor}) \otimes (\mathsf{spin}) \otimes (\mathsf{orbital}) \otimes \underbrace{\psi_B(P,k)}^{\mathsf{radial}}$$

Nucleon wave function: [PRC 77,015202 (2008)] Simplest structure –S-state in quark-diquark system

$$\Psi_N(P,k) = \frac{1}{\sqrt{2}} \left[\Phi_I^0 \Phi_S^0 + \Phi_I^1 \Phi_S^1 \right] \psi_N(P,k)$$

S11 wave function:

1

$$\Psi_{S11}(P,k) = \frac{1}{\sqrt{2}} \gamma_5 \left[\Phi_I^0 X_\rho - \Phi_I^1 X_\lambda \right] \psi_{S11}(P,k)$$

 Ψ_N , Ψ_{S11} covariant; ψ_N , ψ_{S11} scalar wave function

 $\Phi_I^{0,1}$ isospin; $\Phi_S^{0,1}$, $X_{\rho,\lambda}$ spin – combination of **quark states** $\Rightarrow \Psi_B$ written in terms of baryon properties

$SU(6)\otimes O(3)$ QM:

$$|N^{*}(1535)\rangle = \cos\theta \underbrace{|N^{2}P_{1/2}\rangle}_{S=1/2} - \sin\theta \underbrace{|N^{4}P_{1/2}\rangle}_{S=3/2}$$

Approximations:

- No mixture between states (pure S = 1/2 state)
- Pointlike diquark

$$k_{\rho} = \frac{1}{\sqrt{2}}(k_1 - k_2) \to 0$$

No diquark internal P-states

Spectator quark model - S11 wave function

Symmetry in the exchange of quarks 1 and 2 $\begin{cases} \rho = \text{anti-symmetric} \\ \lambda = \text{symmetric} \end{cases}$

Momentum: $k_{\rho} = \frac{1}{\sqrt{2}}(k_1 - k_2)$ $k_{\lambda} = \frac{1}{\sqrt{6}}(k_1 + k_2 - 2k_3)$ Spin states:

 $|\frac{1}{2},+\rangle_{\rho} = \frac{1}{\sqrt{2}}(\uparrow\downarrow-\downarrow\uparrow)\uparrow \qquad |\frac{1}{2},+\rangle_{\lambda} = \frac{1}{\sqrt{6}}\left[2\uparrow\uparrow\downarrow-(\uparrow\downarrow+\downarrow\uparrow)\uparrow\right]$

Using SU(6) \otimes O(3) quark model $[1 \oplus \frac{1}{2}]$:

m

$$\begin{aligned} X_{\rho}(+) &= \sum_{m} \langle 1\,m; \frac{1}{2}, +\frac{1}{2} | \frac{1}{2}, +\frac{1}{2} \rangle Y_{1m}(\hat{k}_{\lambda}) | \frac{1}{2}, \frac{1}{2} - m \rangle_{\rho} + \sum_{m} (....) Y_{1m}(\hat{k}_{\rho}) \\ X_{\lambda}(+) &= \sum \langle 1\,m; \frac{1}{2}, +\frac{1}{2} | \frac{1}{2}, +\frac{1}{2} \rangle Y_{1m}(\hat{k}_{\lambda}) | \frac{1}{2}, \frac{1}{2} - m \rangle_{\lambda} + \sum_{m} (....) Y_{1m}(\hat{k}_{\rho}) \end{aligned}$$

Pointlike diquark approximation $k_
ho o 0 \Rightarrow Y_{1m}(\hat{k}_
ho) \equiv 0$

m

Spectator quark model - S11 wave function

Symmetry in the exchange of quarks 1 and 2 $\begin{cases} \rho = \text{anti-symmetric} \\ \lambda = \text{symmetric} \end{cases}$

Momentum: $k_{\rho} = \frac{1}{\sqrt{2}}(k_1 - k_2)$ $k_{\lambda} = \frac{1}{\sqrt{6}}(k_1 + k_2 - 2k_3)$ Spin states:

 $|\frac{1}{2},+\rangle_{\rho} = \frac{1}{\sqrt{2}}(\uparrow\downarrow-\downarrow\uparrow)\uparrow \qquad |\frac{1}{2},+\rangle_{\lambda} = \frac{1}{\sqrt{6}}\left[2\uparrow\uparrow\downarrow-(\uparrow\downarrow+\downarrow\uparrow)\uparrow\right]$

Using SU(6) \otimes O(3) quark model $[1 \oplus \frac{1}{2}]$:

m

$$\begin{split} X_{\rho}(+) &= \sum_{m} \langle 1\,m; \frac{1}{2}, +\frac{1}{2} | \frac{1}{2}, +\frac{1}{2} \rangle Y_{1m}(\hat{k}_{\lambda}) | \frac{1}{2}, \frac{1}{2} - m \rangle_{\rho} + \sum_{m} (....) Y_{1\vec{m}}(\hat{k}_{\vec{\rho}}) \\ X_{\lambda}(+) &= \sum_{m} \langle 1\,m; \frac{1}{2}, +\frac{1}{2} | \frac{1}{2}, +\frac{1}{2} \rangle Y_{1m}(\hat{k}_{\lambda}) | \frac{1}{2}, \frac{1}{2} - m \rangle_{\lambda} + \sum_{m} (....) Y_{1\vec{m}}(\hat{k}_{\vec{\rho}}) \end{split}$$

Pointlike diquark approximation $k_
ho o 0 \Rightarrow Y_{1m}(\hat{k}_
ho) \equiv 0$

m

Spectator quark model – S11 wave function (II)

 $k_{\lambda0,\pm}$ spherical components of k_{λ} , $N=1/\sqrt{{f k^2}}$

$$X_{\rho}(+) = +N\left\{k_{\lambda0}|+\rangle_{\rho} - \sqrt{2}k_{\lambda+}|-\rangle_{\rho}\right\}$$
$$X_{\lambda}(+) = +N\left\{k_{\lambda0}|+\rangle_{\lambda} - \sqrt{2}k_{\lambda+}|-\rangle_{\lambda}\right\}$$

Relativistic generalization: $\epsilon^{\alpha}_{\lambda}$, \tilde{k}

Diquark polarization vector: $\epsilon_{\lambda}^{\alpha} (\lambda = 0, \pm)$ [Fixed-Axis base] 4-momentum $\tilde{k} = k - \frac{P \cdot k}{M_S^2} P$ [diquark 3-momentum in rest frame]

$$X_{\rho}(+) = -N \left[(\tilde{k} \cdot \epsilon_{0}) u_{S}(+) - \sqrt{2} (\tilde{k} \cdot \epsilon_{+}) u_{S}(-) \right]$$

$$X_{\lambda}(+) = +N \left[(\tilde{k} \cdot \epsilon_{0}) \epsilon_{\alpha} U_{S}^{\alpha}(+) - \sqrt{2} (\tilde{k} \cdot \epsilon_{+}) \epsilon_{\alpha} U_{S}^{\alpha}(-) \right]$$

 $N \to \frac{1}{\sqrt{-\tilde{k}^2}} \qquad U_S^{\alpha}(P,\pm) = \frac{1}{\sqrt{3}}\gamma_5 \left(\gamma^{\alpha} - \frac{P^{\alpha}}{M_S}\right) u(P,\pm) \ [1 \oplus \frac{1}{2} \to \frac{1}{2}]$

Spectator quark model – Scalar wave functions

Scalar wave functions deppendent of $(P - k)^2 = (quark momentum)^2$

$$\chi_B = \frac{(M_B - m_D)^2 - (P - k)^2}{M_B m_D},$$

 $M_B = baryon mass; m_D = diquark mass$

$$\psi_N(P,k) = N_0 \frac{1}{m_D(\beta_1 + \chi_N)(\beta_2 + \chi_N)}$$

$$\psi_{S11}(P,k) = N_S \frac{1}{m_D(\beta_1 + \chi_{S11})(\beta_2 + \chi_{S11})}$$

 β_1 and and β_2 : momentum range parameters Same form for Nucleon and S11 **No** adjustable parameters

Spectator quark model -Electromagnetic transition current

Quark current $j_I^{\mu} \oplus$ Baryon wave function $\Psi_B \Rightarrow J^{\mu}$

Spectator formalism: relativistic impulse approximation

$$J^{\mu} = 3\sum_{\lambda} \int_{k} \bar{\Psi}_{f}(P_{+},k) j^{\mu}_{I} \Psi_{i}(P_{-},k)$$

Franz Gross: PR186, 1448 (1969); F Gross er al PRC 45, 2094 (1992)

diquark on-shell

$$J^{\mu} = \bar{u}_{S11}(P_{+}) \left\{ \left(\gamma^{\mu} - \frac{\not d q^{\mu}}{q^2} \right) F_1^*(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{M_S + M} F_2^*(Q^2) \right\} \gamma_5 u(P_{-})$$

 F_1^*, F_2^* : form factors

$\gamma N \rightarrow$ S11 form factors [arXiv:1105.2223 [hep-ph]]

$$F_1^*(Q^2) = +\frac{1}{2}(3j_1+j_3)\mathcal{I}_0$$

$$F_2^*(Q^2) = -\frac{1}{2}(3j_2-j_4)\frac{M_S+M}{2M}\mathcal{I}_0$$

Isospin coefficients - FG, GR and MTP, PRC 77, 015202 (2008)

$$\begin{array}{ll} j_1 = \frac{1}{6}f_{1+} + \frac{1}{2}f_{1-}\tau_3, & j_3 = \frac{1}{6}f_{1+} - \frac{1}{6}f_{1-}\tau_3\\ j_2 = \frac{1}{6}f_{2+} + \frac{1}{2}f_{2-}\tau_3, & j_4 = \frac{1}{6}f_{2+} - \frac{1}{6}f_{2-}\tau_3 \end{array}$$

Overlap integral (S11 rest frame):

$$\mathcal{I}_0(Q^2) = \int_k rac{k_z}{|\mathbf{k}|} \psi_{S11}(P_+,k) \psi_N(P_-,k),$$

Range of application of the model ?

$\gamma N \rightarrow$ S11 form factors [arXiv:1105:2223 [hep-ph]]

Range of aplication of the model ?

 $|\mathbf{q}|_0$: photon momentum is S11 rest frame

$$\mathcal{I}_0(Q^2 = 0) = \text{const} \times |\mathbf{q}|_0 \alpha \frac{M_S^2 - M^2}{2M_S}$$

$\gamma N \rightarrow$ S11 form factors [arXiv:1105:2223 [hep-ph]]

Range of aplication of the model ?

 $|\mathbf{q}|_0$: photon momentum is S11 rest frame

$$\mathcal{I}_0(Q^2=0) = \text{const} \times |\mathbf{q}|_0 \alpha \frac{M_S^2 - M^2}{2M_S}$$

• If $M_S = M \Rightarrow \mathcal{I}_0(0) = 0$: S11 and nucleon are orthogonal

Range of aplication of the model ?

 $|\mathbf{q}|_0$: photon momentum is S11 rest frame

$$\mathcal{I}_0(Q^2 = 0) = \text{const} \times |\mathbf{q}|_0 \alpha \frac{M_S^2 - M^2}{2M_S}$$

- If $M_S = M \Rightarrow \mathcal{I}_0(0) = 0$: S11 and nucleon are orthogonal
- If $M_S \neq M \Rightarrow \mathcal{I}_0(0) \neq 0$: No orthogonality [Consequence of relativistic generalization (boost of a state)]

Range of aplication of the model ?

 $|\mathbf{q}|_0$: photon momentum is S11 rest frame

$$\mathcal{I}_0(Q^2=0) = \text{const} \times |\mathbf{q}|_0 \alpha \frac{M_S^2 - M^2}{2M_S}$$

• If $M_S = M \Rightarrow \mathcal{I}_0(0) = 0$: S11 and nucleon are orthogonal

- If $M_S \neq M \Rightarrow \mathcal{I}_0(0) \neq 0$: No orthogonality [Consequence of relativistic generalization (boost of a state)]
- Range of application of the model ? $(\mathcal{I}_0(0) \approx 0)$ $|\mathbf{q}|_0$ defines the momentum scale

Range of aplication of the model ?

 $|\mathbf{q}|_0$: photon momentum is S11 rest frame

$$\mathcal{I}_0(Q^2=0) = \text{const} \times |\mathbf{q}|_0 \; \alpha \; \frac{M_S^2 - M^2}{2M_S}$$

• If $M_S = M \Rightarrow \mathcal{I}_0(0) = 0$: S11 and nucleon are orthogonal

- If $M_S \neq M \Rightarrow \mathcal{I}_0(0) \neq 0$: No orthogonality [Consequence of relativistic generalization (boost of a state)]
- Range of application of the model ? $(\mathcal{I}_0(0) \approx 0)$ $|\mathbf{q}|_0$ defines the momentum scale
- If $Q^2 \gg |\mathbf{q}|_0^2 = 0.23 \text{ GeV}^2 \Rightarrow \mathcal{I}_0(0) \approx 0$ Model valid for $Q^2 > 2.3 \text{ GeV}^2$

Model compared with CLAS and MAID data

Gilberto Ramalho (IST, Lisbon)

MENU 2010; June 4, 2010

Model compared with CLAS and MAID data

• F_1^* OK; F_2^* wrong sign

Model compared with CLAS and MAID data

• F_1^* OK; F_2^* wrong sign

Gilberto Ramalho (IST, Lisbon)

...

- Model compared with CLAS and MAID data
- F_1^* OK; F_2^* wrong sign
- ... There is also estimates of valence contributions (EBAC)

• Model compared with EBAC: J. Diaz et al PRC 60, 025207 (2009)

• Model compared with EBAC: J. Diaz et al PRC 60, 025207 (2009)

• F_1^* close to EBAC (valence quark core) ($Q^2 < 2 \text{ GeV}^2$)

Gilberto Ramalho (IST, Lisbon)

• Model compared with EBAC: J. Diaz et al PRC 60, 025207 (2009)

- F_1^* close to EBAC (valence quark core) ($Q^2 < 2 \text{ GeV}^2$)
- F_2^* close to valence estimate $(Q^2 \approx 1 \ {\rm GeV}^2) \ (F_2^*)^{Sp} \simeq (F_2^*)^{QM}$

Results: $\gamma N \rightarrow N^*(1535)$ helicity amplitudes

$$A_{1/2} = -2b\left[F_1^* + \frac{M_S - M}{M_S + M}F_2^*\right], \ S_{1/2} = \sqrt{2}b(M_S + M)\frac{|\mathbf{q}|}{Q^2}\left[\frac{M_S - M}{M_S + M}F_1^* - \tau F_2^*\right]$$

$$|\mathbf{q}| = \frac{\sqrt{[(M_S - M)^2 + Q^2][(M_S + M)^2 + Q^2]}}{2M_S}, \quad b = e\sqrt{\frac{(M_S - M)^2 + Q^2}{8M(M_S^2 - M^2)}}, \quad \tau = \frac{Q^2}{(M_S + M)^2}$$

Gilberto Ramalho (IST, Lisbon)

MENU 2010; June 4, 2010

What if we use $F_2^* \approx 0$? ($Q^2 > 1.5 \text{ GeV}^2$)

Results: $\gamma N \rightarrow N^*(1535)$ helicity amplitudes

• $F_2^* = 0$ (data), F_1^* from Spectator model - - - -

Results: $\gamma N \rightarrow N^*(1535)$ helicity amplitudes

• $F_2^* = 0$ (data), F_1^* from Spectator model - - - - -

• Good description of $A_{1/2}$ and $S_{1/2}$ for $Q^2 > 2.3 \text{ GeV}^2$

Relation between $A_{1/2}$ and $S_{1/2}$ [arXiv:1105:2484 [hep-ph]]

Implications of
$$F_2^* = 0$$
 ? ($Q^2 > 1.5 \text{ GeV}^2$)

$$F_2^* = -\frac{M_S^2 - M^2}{(M_S - M)^2 + Q^2} \frac{1}{2b} \left[A_{1/2} + \sqrt{2} \frac{Q^2}{(S - M)|\mathbf{q}|} S_{1/2} \right]$$

- Valence quark contribution for F_2^* must be canceled by other contributions
- Can it be the meson cloud? $(F_2^*)^{QM} = -(F_2^*)^{mc}$ \Rightarrow Significant meson cloud $\gamma N \rightarrow \Delta$: pion cloud dominates G_C^*, G_F^* PRD 80, 013008 (2010)

•
$$F_2^* \simeq 0$$
: $S_{1/2} \simeq -\frac{1}{\sqrt{2}} \frac{(M_S - M)|\mathbf{q}|}{Q^2} A_{1/2}$

 $\left[\left| \mathbf{q} \right| \simeq Q\sqrt{1+\tau} \right]$

$$S_{1/2} \simeq -rac{\sqrt{1+ au}}{\sqrt{2}} rac{M_S^2 - M^2}{2M_S Q} A_{1/2}$$

If $Q^2 > 1.8 \text{ GeV}^2$:

Relation between $A_{1/2}$ and $S_{1/2}$ (MAID)

MAID parametrization $A_{1/2}:$ $S_{1/2}\simeq -rac{\sqrt{1+ au}}{\sqrt{2}}rac{M_S^2-M^2}{2M_SQ}A_{1/2}$

Gilberto Ramalho (IST, Lisbon)

 $\gamma N \rightarrow N^*(1535)$ at high Q^2

MENU 2010; June 4, 2010

Assymptotic behaviour [arXiv:1105:2223 [hep-ph]]

Comparing with pQCD, Carlson *et al.* PRL 81, 2646 (1998) Model and Data overestimates pQCD result

Gilberto Ramalho (IST, Lisbon)

 $\gamma N \rightarrow N^*(1535)$ at high Q^2

MENU 2010; June 4, 2010

• $\gamma N \rightarrow N(1535)$ at high Q^2

Model with no parameters to adjust (only for nucleon)

$\bullet~\gamma N \to N(1535)$ at high Q^2

Model with no parameters to adjust (only for nucleon)

- Valence quark degrees of freedom suficient to explain F_1^* data
- Valence quark insuficient to describe F_2^* data; but result consistent with independent estimations of valence quark core

$\bullet~\gamma N \to N(1535)$ at high Q^2

Model with no parameters to adjust (only for nucleon)

- Valence quark degrees of freedom suficient to explain F_1^* data
- Valence quark insuficient to describe F_2^* data; but result consistent with independent estimations of valence quark core
- Data sugests $F_2^* \simeq 0$ for high Q^2

 $\bullet~\gamma N \to N(1535)$ at high Q^2

Model with no parameters to adjust (only for nucleon)

- Valence quark degrees of freedom suficient to explain F_1^* data
- Valence quark insuficient to describe F_2^* data; but result consistent with independent estimations of valence quark core
- Data sugests $F_2^* \simeq 0$ for high Q^2
 - Cancelation between valence quark effects and meson cloud effects

$\bullet~\gamma N \to N(1535)$ at high Q^2

Model with no parameters to adjust (only for nucleon)

- Valence quark degrees of freedom suficient to explain F_1^* data
- Valence quark insuficient to describe F_2^* data; but result consistent with independent estimations of valence quark core
- $\bullet\,$ Data sugests $F_2^*\simeq 0$ for high Q^2
 - Cancelation between valence quark effects and meson cloud effects
 - Signature of the cancelation:

$$S_{1/2} \simeq -\frac{\sqrt{1+\tau}}{\sqrt{2}} \frac{M_S^2 - M^2}{2M_S Q} A_{1/2}$$
 (1)

 $\bullet~\gamma N \to N(1535)$ at high Q^2

Model with no parameters to adjust (only for nucleon)

- Valence quark degrees of freedom suficient to explain F_1^* data
- Valence quark insuficient to describe F_2^\ast data; but result consistent with independent estimations of valence quark core
- Data sugests $F_2^* \simeq 0$ for high Q^2
 - Cancelation between valence quark effects and meson cloud effects
 - Signature of the cancelation:

$$S_{1/2} \simeq -\frac{\sqrt{1+\tau}}{\sqrt{2}} \frac{M_S^2 - M^2}{2M_S Q} A_{1/2}$$
 (1)

Consistent with MAID parametrization

 $\bullet~\gamma N \to N(1535)$ at high Q^2

Model with no parameters to adjust (only for nucleon)

- Valence quark degrees of freedom suficient to explain F_1^* data
- Valence quark insuficient to describe F_2^* data; but result consistent with independent estimations of valence quark core
- Data sugests $F_2^* \simeq 0$ for high Q^2
 - Cancelation between valence quark effects and meson cloud effects
 - Signature of the cancelation:

$$S_{1/2} \simeq -\frac{\sqrt{1+\tau}}{\sqrt{2}} \frac{M_S^2 - M^2}{2M_S Q} A_{1/2}$$
 (1)

- Consistent with MAID parametrization
- Accurate data for $A_{1/2}$ and $S_{1/2}$ for $Q^2 > 5 \text{ GeV}^2$ is welcome to test Equation (1)

 $\bullet~\gamma N \to N(1535)$ at high Q^2

Model with no parameters to adjust (only for nucleon)

- Valence quark degrees of freedom suficient to explain F_1^* data
- Valence quark insuficient to describe F_2^\ast data; but result consistent with independent estimations of valence quark core
- $\bullet\,$ Data sugests $F_2^*\simeq 0$ for high Q^2
 - Cancelation between valence quark effects and meson cloud effects
 - Signature of the cancelation:

$$S_{1/2} \simeq -\frac{\sqrt{1+\tau}}{\sqrt{2}} \frac{M_S^2 - M^2}{2M_S Q} A_{1/2}$$
 (1)

- Consistent with MAID parametrization
- Accurate data for $A_{1/2}$ and $S_{1/2}$ for $Q^2 > 5 \text{ GeV}^2$ is welcome to test Equation (1)
- Model applied to other resonances: $\Delta(1232), N(1440), \Delta(1600), \ldots$

Nucleon Resonances

Selected bibliography (part 1)

- A covariant formalism for the N* electroproduction at high momentum transfer
 G. Ramalho, Franz Gross, M. T. Peña and K. Tsushima, arXiv:1008.0371 [hep-ph].
 Excusive Reactions and High Momentum Transfer IV, 287 (2011).
- A pure S-wave covariant model for the nucleon F. Gross, G. Ramalho and M. T. Peña, Phys. Rev. C 77, 015202 (2008) [arXiv:nucl-th/0606029].
- A Covariant model for the nucleon and the Δ G. Ramalho, M. T. Peña and F. Gross, Eur. Phys. J. A **36**, 329 (2008) [arXiv:0803.3034 [hep-ph]].
- D-state effects in the electromagnetic NΔ transition
 G. Ramalho, M. T. Peña and F. Gross, Phys. Rev. D 78, 114017 (2008) [arXiv:0810.4126 [hep-ph]].

Selected bibliography (part 2)

- Nucleon and γN → Δ lattice form factors in a constituent quark model
 G. Ramalho and M. T. Peña, J. Phys. G 36, 115011 (2009) [arXiv:0812.0187 [hep-ph]].
- Valence quark contribution for the γN → Δ quadrupole transition extracted from lattice QCD
 G. Ramalho and M. T. Peña, Phys. Rev. D 80, 013008 (2009) [arXiv:0901.4310 [hep-ph]].
- Valence quark contributions for the $\gamma N \rightarrow P_{11}(1440)$ form factors G. Ramalho and K. Tsushima, Phys. Rev. D **81**, 074020 (2010) [arXiv:1002.3386 [hep-ph]].
- A model for the $\Delta(1600)$ resonance and $\gamma N \rightarrow \Delta(1600)$ transition G. Ramalho and K. Tsushima, Phys. Rev. D 82, 073007 (2010) [arXiv:1008.3822 [hep-ph]].

• A covariant model for the $\gamma N \to N(1535)$ transition at high momentum transfer

G. Ramalho and M. T. Peña, [arXiv:1105.2223 [hep-ph]].

• A simple relation between the $\gamma N \rightarrow N(1535)$ helicity amplitudes G. Ramalho and K. Tsushima, [arXiv:1105.2484 [hep-ph]].